
DEFENSE TECHNICAL INFORMATION CENTER

[nfonHAlioitfor tkt Def&ut Co*umuuty

DTIC®has determined on X° l$frlQJ>W that this Technical Document has the
Distribution Statement checked below. The current distribution for this document can
be found in the DTIC® Technical Report Database.

IS' DISTRIBUTION STATEMENT A. Approved for public release; distribution is
unlimited.

• © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights
and uses except those permitted by copyright law are reserved by the copyright owner.

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government
agencies only (fill in reason) (date of determination). Other requests for this document
shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government
Agencies and their contractors (fill in reason) (date of determination). Other requests for
this document shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT D. Distribution authorized to the Department of
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other
requests shall be referred to (insert controlling DoD office).

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only
(fill in reason) (date of determination). Other requests shall be referred to (insert
controlling DoD office).

• DISTRIBUTION STATEMENT F. Further dissemination only as directed by
(inserting controlling DoD office) (date of determination) or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

• DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government
Agencies and private individuals or enterprises eligible to obtain export-controlled
technical data in accordance with DoDD 5230.25; (date of determination). DoD
Controlling Office is (insert controlling DoD office).

REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-,0-0299
Public reporting burden tor this collection of information is estimated to average 1 hour per response, Including the time for reviewing instructions
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect o
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188). 121-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
02-26-2009

2. REPORT TYPE
Final

3. DATES COVERED (From • To)
06-01-2005 - 11-30-08

4. TITLE AND SUBTITLE
Security Certification Modeling

5a. CONTRACT NUMBER
FA9550-05-1-0374
5b. GRANT NUMBER
FA9550-05-1-0374
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Rose Gamble

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Tulsa
800 S. Tucker Drive
Tulsa, OK 74145

8. PERFORMING ORGANIZATION REPORT
NUMBER

Technical Report TR-SEAT-
UTULSA-2009-4

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office
of Scientific Research 875 North Randolph Street

Suite 325, Rm 3112 £)oj
Arlington, VA 22203 KoC

10. SPONSOR/MONITOR'S ACRONYM(S)
AFOSR

11. SPONSOR/MONITORS REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Open

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research focused on security certification policy modeling for a System of Systems
(SoS). Three main results were obtained. The first major result was a semi-formal UML
Component Protection Profile (CPP)to describe a software component's broad security
expectations and interactions within the SoS. The CPP allows direct comparison of components
that interact to determine if they interfere with local security requirements. Examples
illustrate basic instantiations of multiple component security profiles along with the local
violations that result from their conflicting or competing interactions within a SoS. The
second result was an extension to a formal specification language to accommodate SoS global
architecture and security certification criteria expressed as progress properties. Audit
criteria from the NIST SP800-53 exemplify both local and global constraints and their
compliance throughout the SoS. The third major result is a formal analysis of role-based
access control policies using an extension of the Colored Petri Net. Overall, this
fundamental effort indicated that more unification of security constructs is needed across
the local, global, and internal activities of a SoS and its components to determine full
system compliance with security certification criteria.

15. SUBJECT TERMS
Security, Certification, System of Systems, Distributed Systems

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

A 2

19a. NAME OF RESPONSIBLE PERSON
Rose Gamble
19b. TELEPHONE NUMBER (include area
code)
918-631-2988

20100916288
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Sid Z39.18

Executive Summary
Due to constantly changing demands on today's systems, using component-based

software systems is a popular development strategy for large applications. Legacy and
stovepipe systems, commercial-off-the-shelf (COTS) products, and other third-party
software created independently to interact with one another, are now being forced to
work together reliably and securely as components of a System of Systems (SoS). When
components become part of a SoS, individual component security is not enough to
guarantee that the whole system is secure.

Software security certification must show compliance with a range of documented
requirements associated with different security policies and targeted to certain computing
and interface properties. The focus of this research is on investigating and reformulating
those security certification criteria that impact SoS. Specifically, we are concerned with
inter-component interaction behaviors that are governed by their individual security
policies, as well and their communication style to exchange data and control information.
The goal is to investigate modeling approaches so that the security policies within and
across the SoS architecture could be expressed in such a way that compliance with
certification criteria could be assessed.

The major challenges are
• Understanding policy attributes and mechanisms with respect to

compliance
• Interleaving component communication styles and policy governance
• Devising common properties across different policy types
• Expressing security certification criteria within a comparative framework

of the policies
• Verifying compliance based on both safety and progress properties
• Understanding the impacts of policies are internal component processing,

component interfaces, and global SoS architecture

This report describes the culmination of our research to address the above areas.
We partition the discussion into three dimensions of software security certification. We
present the Security Certification Modeling (SCM) framework, a modeling profile that is
based on a component's security policies, communication strategies, and placement in an
SoS architecture. Security certification criteria based on audit requirements are used to
show how local comparators are expressed to find policy violations among interacting
components in the SoS. We overview our research effort toward increasing the formal
representation of policy attributes at the global SoS level. We extend an existing formal
specification language to create X-UNITY to express the SoS hierarchy, communication
infrastructure, and component policies that affect SoS security requirements. X-UNITY
allows for temporally based certification criteria to be formulated for compliance
verification across the SoS components. Finally, we report on our early investigation into
specific access control representations to understand how the SCM can be more detailed
to express internal processing of security policy functions, such as access control. From
this research, a unique Petri Net, called ConPN, has been developed to analyze violations
of Role-Based Access Control policies of interacting components.

Publications related to the grant
• Isolation in Design Reuse, with M. Gamble, Journal of Software Process

Improvement and Practice, Vol. 13, pp. 145-156, Feb. 2008.
• Reasoning about Hybrid System of Systems Designs, with M.T. Gamble, IEEE

International Conference on Composition Based Software Systems, 2008.
• Isolating Mechanisms in COTS-Based Systems, with M.T. Gamble, IEEE

International Conference on COTS-Based Software Systems, 2007.
• The impact of certification criteria on integrated COTS-based systems, with M.

Kelkar, R. Perry, and A. Walvekar, Proceedings of the IEEE International
Conference on COTS-Based Software Systems, 2007.

• Patterns of Conflict among Software Components, with M. Hepner, M. Kelkar, L.
Davis, and D. Flagg, Journal of Systems and Software, Vol 79, Issue 4, pp. 537-551,
2006.

• Determining Conflicts in Interdomain Mappings for Access Control, with A.
Walvekar, M. Kelkar, M. Smith, Joint Workshop on Foundations of Computer
Security and Automated Reasoning For Security Protocol Analysis, (FCS-
ARSPA'06), 2006.

• Examining Security Certification and Access Control Conflicts Using Deontic Logic,
with M. Smith and M. Kelkar, 1st International Workshop on Software Certification
(CERTSOFT06), 2006.

• Forming A Security Certification Enclave For Service-Oriented Architectures, with
M. Hepner and M. T. Gamble, Modeling, Design, and Analysis For Service-Oriented
Architecture Workshop (MDA4SOA'06), 2006.

• Interaction Partnering Criteria for Commercial-Off-The-Shelf (COTS) Components,
with M. Kelkar, and M. Smith, 18th International Conference on Software
Engineering and Knowledge Engineering, 2006 (SEKE 2006).

• Security Profiling of COTS Components For Interaction Partnering, with M. Kelkar
and M. Smith, IEEE International Conference on COTS-Based Software Systems,
Poster Session, Feb. 2006.

• Interdomain Policy and Access Control within A Grid Architecture, with N.
Lamonica, M. Kelkar, and R. Baird, Software Engineering and Application
Conference, 2005.

Contributing Theses and Dissertations
• Toward Policy Based Logic For Secure Component Interaction, M. Smith, M.S.

Thesis, Dept. of Mathematical and Computer Sciences, University ofTulsa, 2006.
• ConPN: Detecting Conflicts in Interdomain Mappings, A. Walvekar, M.S. Thesis,

Dept. of Mathematical and Computer Sciences, University ofTulsa, 2006.
• Modeling Software Component Security Policies, Ph.D. Dissertation, M. Kelkar.

Dept. of Mathematical and Computer Sciences, University ofTulsa, 2007.
• Reasoning about Isolation in Distribute System Design, Ph.D. Dissertation, M.T.

Gamble, Dept. of Mathematical and Computer Sciences, University of Tulsa,
2007.

1. Security Certification Modeling Framework
The Security Certification Modeling (SCM) framework focuses on a subset of

available security policy types relevant to SoS. Emphasis is placed on policy properties
for which communication and interaction is predictable and observable. This emphasis is
derived from the need for the SoS to describe the mechanisms that implement expressed
security policies via the attributes and functionality that relate specifically to interaction.
Similarly, our policy investigation examines certification criteria that have a direct
relevance to SoS exposed interfaces and services.

Security policies for SoSs rely on an communication-centric approach that
maintains the integrity of system components, protects the confidentiality of information,
and provides continued availability to systems [1, 2]. We derive the set of policy types
from industry standards including the Department of Defense Goal Security Architecture
(DGSA) [3], the Common Criteria [4], Carnegie Mellon University's Computer
Emergency Response Team (CERT) [2], the Federal Information Processing Standards
(FIPS) minimum security requirements [5], and the NIST 800 series of publications [6].
An empirical study of these documents reveals significant corroboration of the policy
types across the documents. The DGSA defines seven core policy types [3]. The
Common Criteria contains eleven functional classes for security policies [4]. NIST
isolates security requirements across seventeen different categories [5].

Overlap exists in the policy designations. For instance, the DGSA policy type of
availability [3] is closely related to the FIPS document definition of contingency planning
[5] and the Common Criteria's resource utilization [4]. Selecting the appropriate
consolidation of properties is required to express important policies with the details
needed for analysis. From empirical analysis, we delineate features, properties, and intent
across a uniform granularity to obtain a minimal set of core policy types for our focus.
The result is six policy types and their relevant properties governing SoS interaction for
preserving system integrity, confidentiality, and availability. The specific subset of policy
types are: audit, authentication, authorization, contingency planning, data protection,
and non-repudiation. Our SCM framework is designed to accommodate statements from
each of these policy types for SoS component specification and interaction. We target the
policy properties of interest to a SoS for each policy type below.

Audit is concerned with recording or logging specific events that occur within or
between components of a SoS. Policy statements of interest express constraints on the
type of information to be recorded, the logging frequency, and how the information is
handled or aggregated [2, 4, 7]. Mechanisms associated with auditing focus on the
creation of audit records and the manipulation of log files [2, 8]. Policy requirements can
stipulate that audit records of specific levels of importance (normal, alert, catastrophic,
etc.) require the transmission of messages (e-mail, log files, etc.) to administrative
personnel or automated toolkits [9].

Component authentication policies concern the type and configuration of the
authentication checking mechanisms for SoS components. Common authentication
mechanisms that are used to verify component identity are password-based or certificate-
based. Constraints may be placed on length, complexity, and validity periods [2, 4, 9].
Authentication policies have policy statements related to a Boolean response of
authentication (allow, deny) [4]. Authentication may allow single login or interactive
access for multiple logins [10]. Common policies restrict authentication based on

component location, express requirements over re-authentication after periods of
inactivity, and restrict the number of failed login attempts that are permitted by the
system [2].

Authorization policies state how authorization checks are performed by
components within the SoS. Specific mechanisms for access control (lists, matrices, etc.)
must be detailed as well as how access control is granted (mandatory access control, role-
based access control, etc.) [10-12]. Policy specifications may require local authorization
or enable remote authorization for the establishment of trusted channels for which
information may be passed through [4]. Other policies track access time to establish
temporal constraints for authorization [4, 11, 13].

Backup procedures and redundant system requirements are specified with
contingency planning policy statements. Operational specifications of the contingency
plan dictate what mechanisms should be available for expressing how backups should
record data (differential, incremental, etc.) as well as any transactional database
requirements that are used by the SoS (roll-back, roll-forward, etc.) [14, 15]. Where and
how the backup systems are stored within the SoS, such as initiating a dedicated
component or tasking an existing component, are specified with contingency planning
policy statements. Thus, the policy can define local or remote backup systems.

Data protection defines constraints on how data is encrypted and stored or
transmitted between components of the SoS. Policy statements can specify the types of
encryption (RSA, DES, AES, etc.) and constraints over the size of any keys or validity
periods [10, 16]. Composing policy statements over a set of interacting components
dictates the specific types of data that traverse the SoS. Requirements often coincide with
the communication style used by the component for exchanging information (e.g., stream
or block transportation).

A final policy type invokes mechanisms used to attain non-repudiation between
SoS components. Non-repudiation concerns trust and integrity of information,
specifically the cryptographic methods and algorithms that prevent SoS entities from
denying having performed actions over data [4]. These policy statements describe the
protocols and mechanisms (KE, ZDB, Bao, etc.) that provide non-repudiation [17], as
well as any constraints the SoS may place on their configuration such as key sizes and
data validity periods. Attributes about the non-repudiation policies include the delivery
mechanism used by the algorithm (submission, transport, both) [4] and the interactivity
that is required by the system (synchronous, asynchronous) [18, 19].

We do not address policy types that do not directly relate to observable features of
SoS components, such as those policies focused on managing incident response [5],
environmental protection [5], security user roles [4], and personnel training [5, 20]. While
these policies are crucial to the entire certification process and the maintenance of secure
systems, the focus of the SCM framework is design-time analysis of the SoS components
and their configuration. Thus, a variety of security policy types are ignored including
those related to organizational, systems maintenance, managerial, environmental,
training, risk assessment, and systems acquisition [5].

1.1 Descriptors
Foremost to formulating a uniform and comparable security policy models is the

accumulation of a strong policy information base acquired from reliable sources. The

model should support property and expectation comparisons, not just among policies of
the same type, but across policies of different types as dictated by security certification
criteria.

Our approach to modeling and comparing the numerous criteria and the qualities
embedded in both security policy statements and certification criteria is based on
separation of concerns. From this perspective, we introduce eight descriptors that
structure and organize relevant policy and component information across distinct
concerns. There are two classifications of descriptors. Architectural descriptors dictate
component interaction expectations and partners (neighbors). Policy descriptors express
the governance properties of each policy. Because they are based on concerns, the
segregation of descriptors is independent of the policy type. Therefore, the descriptors
span all policy types by allowing overloading of attributes and methods expressed in the
resulting profile.

1.1.1 Policy Descriptors
Policy descriptors express concerns related specifically to governing the security

of the component. Separating the descriptors across policy information more directly
dictates how assessment is targeted. A necessary level of coverage across the information
that should be recorded by a component is required to ensure that proper policy
description and analysis can occur. Figure 1 shows the interrelation between the five
policy descriptors our framework uses for policy description. These are security policy
assertions, observable behaviors, mechanisms, policy constraints, and dependencies. We
overview each descriptor model. Definitions of the internal contents of a descriptor can
be found in [21].

PotcyT/pe

Policy Constraints

Security Policy Assertions

Observable Behaviors

Dependencies

Figure 1. Policy Descriptors

At the core of the description for each policy type are security policy assertions
and observable behaviors. Security policy assertions contain key fundamental statements
about the policy statements for each component. The security policy assertions descriptor
defines specific policy attributes that are static for each component within the SoS across
each policy type (i.e., audit, authorization, etc.). The attributes form a foundation for
direct policy comparison to detect conflicts. Assertions values are derived from general
policy understanding and common attributes needed for certification. The most basic
assertion is the Boolean capability that indicates whether or not the component's expose
interface has a policy of a particular type. The absence of a policy is a policy in itself and

must be accounted for when assessing compliance [2, 10]. As an example, attributes of
the security policy assertions descriptor can detect and ensure that each component
contains an audit security policy for compliance assessment of a system-wide policy
mandating the centralized collection of audit records from SoS components. Another
assertion is response type. For example, an audit policy specifies the type of messages
that must be generated (e.g., email message, report, database entry, etc.) [4].

The observable behaviors descriptor uniformly states how a policy restricts
component behavior at an exposed interface. Describing the functional aspects of each
policy is accomplished via overloaded methods that abstract behavior concepts. The
instantiation of this descriptor describes the allowable behavior of the component, as
restricted by the security policy, in terms of what information is exchanged between
components. Specifying component behavior is a key need for certification. For example,
NIST specifies assessment needs with respect to interconnection agreements [22]. The
DGSA advises a strict isolation between information domains [3]. The observable
behavior descriptor purposely allows overloading its methods to achieve expression
across the different policy types. Various interaction behaviors that exist between
components include sendData, receiveData, delegateData, transferData, shareData,
initializeData, manageData, broadcastData, and requestData, where Data is the data
type instantiated in the security policy assertions descriptor for each policy type. For
example, sendData may refer to the authentication response for an authentication policy
or the log file entries for an audit policy. Observable behaviors do not refer to specific
code or mechanisms used to transmit data. These concerns are relegated to the
mechanism descriptor, described next.

Directly surrounding the core observable behaviors and security policy assertions
in the framework is the mechanism descriptor that contains references to specific policy
enforcement technologies. The mechanism descriptor expresses how a policy is
implemented and deployed at an exposed interface. The descriptor records the possible
policy enforcement mechanisms that a component supports. Policy enforcement
mechanisms have been extensively cataloged by government agencies [9, 15] and
certification agencies [2, 4]. The mechanism descriptor encompasses a model the
mechanism adheres to and the mode it uses to enforce the policy. It names the data of the
correct type given in security policy assertions. Thus, dataName indicates an enforcement
type such as password, certificates, or PKI [2, 4, 9] for a authentication policy. Another
example in which to explain the specific model a policy must adhere to is the case of data
protection policies where different encryption algorithms may be used for the encoding of
data (RSA, DES, AES, etc.) [10, 16]. The mechanism mode describes details of the
policy implementation such as a contingency planning policy that may specify
incremental versus differential backup plans [15, 23].

Dictating inter-descriptor compatibilities within a single policy type is
accomplished via the specification of policy constraints. Policy constraints selectively
apply mechanisms of the framework to observable behaviors. These constraints may
encompass combinations of policy attributes, methods, and timing, based on the SoS
system requirements and the properties of interaction partners of the component. The
policy constraint descriptor supports the differentiation between trusted and untrusted
components. If an interaction partner is not known to be trusted, a different set of
behaviors are expected that rely on a different set of mechanisms than those for a trusted

component. Thus, the constraints descriptor aids the expression of CERT suggestions for
adding additional levels of encryption to communicating components using untrusted
network segments [2]. Other types of constraints, such as minimum password lengths
[24] and using shared authentication data to develop trust within the SoS [25] are
supported via a set of allow and check methods that rely on UML OCL statements that
are expressible within the modeling framework. The constraint descriptor is one of the
few descriptors that expects its entries to be customized to the components functionality
within the SoS and the neighbors that the component may potentially interact with.

Table 1 provides a sample of the types of overloaded entries that are present in the
four descriptors discussed above and shown in the first column. The second column
shows sample attributes and methods. The third column indicates possible instantiations.
The last column is the policy type for which such an instantiation would be valid. Policies
requiring entries not directly supported by the overloaded descriptors can extend the
model and define unique policy-specific entries as needed, enabling the framework to
uniformly represent a wide variety of policies.

Table 1. Sampling of overloaded descriptor entries

Descriptor Entry Example Values Policy Type

Mechanisms

data Password, certificate, PKI Authentication
data Symmetric key, public-private pair Data Protection
mode CCB, ECD Data Protection
mode Bit, byte Non-Repudiation
model RBAC, IBAC, MLS, DAC, MAC Authorization
model KM. ZDB, Bao, Markowitch Non-Repudiation

Observable Behaviors

requestData() Requests for access Authorization
requestDataQ Encryption requests for public keys Data Protection
response Allow, deny Authentication
response Allow, deny Authorization
shareData() Transfer log entnes for storage Audit
shareData() Copy backup files offsite Contingency Planning

Security Policy
Assertions

dataType E\«nts, signatures, patterns Audit

dataType Roll back, roll forward Contingency Planning
interactivity Single login, interactive Authentication
interactivity Synchronous, Asynchronous Non-Repudiation

Policy Constraints

checkDataLength() Checks length of log files Audit

checkDataLengthQ Checks length of password Authentication
modelComplexity Password complexity policies Authentication
modelComplexity Encryption algorithm complexity Data Protection

The last policy descriptor to discuss is the dependencies descriptor. This
descriptor maintains the desired cross policy constraints for component. For example,
authentication policies can depend on audit when a policy statement requires logging the
successful or unsuccessful attempts at authentication to detect system intrusion [2, 26].
Dependencies describe interrelationships between different security policy types by
explicitly stating links rather than anecdotally via commonly accepted connections. The
concern is that if one policy type is in conflict with a neighboring policy type (at an
exposed interface) then it is essential to know if that conflict can propagate to other
policy types causing an indirect conflict or violation. Thus, the dependencies descriptor
expresses inter-policy governance. Dependencies can also be defined from the
component's perspective in the SoS to facilitate the analysis of system-wide, cross policy
requirements. Multiple descriptor requirements permeate the dependency between policy

types, e.g. (1) two different policy types must both contain security policy assertion
descriptors with a true capability, (2) the authentication policy must define observable
behaviors that share a Boolean authentication response, (3) the audit policy must support
storage of failed authentication attempts, and (4) the audit policy must support a
mechanism that delivers alerts to an intrusion detection mechanism. Figure 2 shows a
sample of the complex interdependencies between the various policies related to
confidentiality [3], secure file backups [2], the protection of trusted functions [4], and
other industry standards.

Protection of Trusted Functions

1
Audi Authentication

1
Authorization

1 1 r- J
ty Log Authentication Failures Protect Confidential

Encrypt User Passwords
Secure File Backups

1 1 1
Contingency

Planning
Data Protection 1 Non-

Repudiation

Figure 2. Dependency Descriptor Interrelationship

The combination of the policy descriptors and six policy types along with
dependency specifications enables the SCM framework to represent a variety of policy
specifications for SoS components. Compliance assessment is possible via analysis of all
policy descriptors across all policy types by examining the component linkage that exists
within the SoS architecture. Information about SoS links and communication pathways is
necessary for the analysis and is defined by a set of architectural descriptors described in
the next section.

1.1.2 Architecture Descriptors
In the SCM framework, three architectural descriptors express a component's

perspective of its processing expectations within the SoS. That is, architecture descriptors
indicate who the component's interaction partners are (configuration), how the
component communicates to them (communication), what state the component is in
(state). By definition of a SoS, each component is linked to one or more interaction
partners. The configuration descriptor explicitly identifies the links facilitating the
description of trust according to the interaction partners that are under scrutiny. The
communication descriptor specifies the architectural characteristics of the link including
an interaction style (send, receive, broadcast, poll, etc.) [27, 28], quality, and frequency,
as well as the types of data that are sent over the link between components.
Communication can be affected by various security policy requirements such as
encryption that can reduce the speed and quality of the link [29]. Finally, a state
descriptor is used to specify the interaction and data states that a component may
encounter as it exchanges data and control with other components. The interactions
between components within a SoS can trigger state changes for which security policy
specifications dictate behavior. The communication style can be analyzed in conjunction
with state and configuration to determine if there are any interoperability problems that
can affect security compliance with the components participating in the interaction. The

three can also provide a representation of the SoS overall and its communication
infrastructure and composite state.

Table 2 samples some attributes of the architecture descriptors with examples of
allowable values that can be used within the CPP.

Table 2. CPP Descriptor Attribute Values

Descriptor
Category Entry Description Allowed Arguments / Values

Communication

sendDataOverConnector Method used to send data to a
specific Interaction Partner

Interaction Partner, mech.Data

receiveDataOverConnector Method used to receive data from a
Interaction Partner

Interaction Partner, mech.Data

Configuration partners The set of Interaction Partners
associated with a secComp

Interaction Partner

1.2 Certification Criteria
A major difficulty in software security certification is the disconnect between the

generic, documented criteria and the formulated requirements statements that are needed
to show SoS compliance. The SCM framework we have developed offers a foundation to
classify and dissect generic criteria to interpret and express them as requirements with
direct applicability to the underlying SoS policy model. The SCM framework then assists
the model-based expression of a software component's security policies while
simultaneously reformulating criteria statements in a manner that allows evaluation.

The SCM framework has been built to support criteria taken from the DIACAP
LA Controls [9], Common Criteria [30], and NIST [15] while still retaining an open
approach enabling other criteria documents to be incorporated in the future. For this
report, we examine criteria statements taken from the NIST document SP 800-53,
summarized in Table 3 [15]. The statements specify the recommended security controls
for the auditing of information systems. NIST isolates controls in accordance with
security baselines for low-impact, medium-impact, and high-impact information systems.
Depending on the classification of a system different security controls are recommended.

Table 3. NIST security controls for audit
Description NIST 800-53 control no.

The information system generates audit records for events per

system as chosen by the organization . AU-2

The information system provides the capability to compile audit

records from multiple components throughout the system into a
system wide (logical or physical), time-correlated audit trail.

AU-2(1)

The information system provides the capability to manage the

selection of events to be audited by individual components of
the system

AU-2(2)

The information system produces audit records that contain
sufficient information to establish what events occurred, the

sources of the events, and the outcomes of the events.
AU-3

The information system provides the capability to centrally

manage the content of audit records generated by individual

components throughout the system
AU-3(2)

As shown in Table 3 each control has one or more topics of focus related to
secure auditing. Italics are used to place emphasis on key issues each criteria addresses.
The goal is to dissect the criteria, narrow the scope of its software policy applicability,
and associate the criteria with the descriptor models. Thus, associating each criteria
statement to policy descriptors requires an intelligent decomposition of the criteria. From
these associations, directly expressible security requirements emerge with which the
modeled SoS must comply. Granted, some criteria statements do not have a direct
applicability to the component level. For example, NIST AU-2 stipulates an information
system must generate audit records as determined by the organization. Certification
against this type of criteria statement must be performed at a managerial level in order to
determine that the organization has defined the audit record entries the information
system must record. No descriptor or policy type in the CPP can adequately prove this
statement is satisfied.

Other criteria statements such as AU-2(1) have more direct ties to component
policy representations. AU-2(1) contains high-level criteria that "components must
maintain audit records" and "components must be able to transfer audit records to other
components" that can be represented with descriptors. Additionally, overlap can exist
when examining multiple criteria such as the "system wide" audit trail required by AU-
2(1) and the "centrally managed" audit records stated in AU-3(2).

Our approach uses grammatical constructs and information analysis techniques to
form intermediate decompositions for a more general semantic labeling. The intermediate
representation can then be mapped into descriptor attributes and methods. Thus, the
approach forces the criteria into a requirements statement that is comparable to policy
models. Without this uniformity, violations in compliance could not be verified. Table 4
outlines a detailed decomposition of the AU-2(1) criteria mapping specific statements
such as "multiple components" to the descriptors for policy constraints and configuration.

10

Table 4. AU-2(1) Criteria Decomposition and Mapping
Phrase Intermediate Decomposition Descriptor Mapping
The information system System, SoS System, SoS
provides the capability Process, function Mechanism, Policy Constraints
To compile store, collect, aggregate Observable Behaviors

audit policy type Security Policy Assertions
records data type Security Policy Assertions

from transfer
Communication, Observable Behaviors,
Mechanism

multiple per component Policy Constraints
components many components Configuration

throughout the system all components possible Configuration

into input, receive
Communication, Observable Behaviors,
Mechanism

a system-wide over all components, central Configuration
time-correlated data organization type Security Policy Assertions
audit policy type Security Policy Assertions

trail. storage, series (records) Security Policy Assertions

Correlating the different descriptor mappings enables more direct codification of
criteria details using the CPP model. Each descriptor defines the methods and attributes
required for policy expression. The descriptors were refined to further reflect the
parameters and arguments as determined by criteria specifications.

1.3 Component Protection Profile
The accumulation of the instantiated descriptors for a particular component forms

its Component Protection Profile (CPP). The CPP is defined by extending the Unified
Modeling Language meta-model (UML). The composition of all CPPs for the
components in a SoS represent its set of local policies. Because of the way that we
manage the security certification criteria, as discussed above, the CPP also provides the
foundational units for criteria expression [31]. Shown in Figure 3 and Figure 4 the CPP
distinguishes between architectural and policy descriptors using UML stereotypes to
extend the meta-model according to our approach to support security policies. The main
component, secComp, has associated architecture descriptors, Configuration and State,
that provide a foundation for interaction.

In the lower left of Figure 3, the Configuration stereotype contains the set of
Interaction Partners, each of which is a secComp known to be trusted or not by the
component. Interaction between components is specified using one or more Port
specifications. Each Port is an exposed interface of the component. The Port defines its
communication style with the Communication descriptor, born out of research results on
interoperability analysis and the communication conflicts that can contribute to security
vulnerabilities [32, 33]. Enumerations are used throughout the CPP specification to
provide the acceptable information for specific types of interaction and policies. For
example, an InteractionType within the Communication descriptor is used by the
component to describe the specific type of interaction, e.g., send, receive, broadcast, and
poll, that it expects to exchange data and control with the other components that
communicate at that interface port.

II

«metaclass»

1
*<mm**>

•stereotype"
ArchDescriptor

1
«stereotype»

PolicyDescriptor

«meta class*
Component

« stereotype »
secComp

namef.1I: String
domain[1] : String

Conftguration» cnfg[1.,"] : ArchDescriptor
«State» st(1]: ArchDescriptor
portsfl *]: Port

interactionDelayfl] : Long
nteractionFrequency(1] : Long
mteractionGuality(l): Quality
interactionType[1] : InteractionType

« stereotype*
Communication

sendDataOverConnectorfjn toComp : Interaction Partner, in data : Data)
receiveDataOverConnector(in fromComp : Interaction Partner): Data
delegateTask(in toComp Interaction Partner)
forwardTask(in fromComp: Interaction Partner, in toComp: Interaction Partner)
readSystemVariableO . Data
writeSystemVariabtefm Mech data : Data)
pollforDataQ : Data

«metactass»

« stereotype*
Port

nameft]: String
<<Communication>> comm[1]: ArchDescriptor
<<Dependencies»dep[1]: PolicyDescriptor
policyp..6]: Policy
compTypefl] : CompType

Artfact

« stereotype »
Policy

type[1l: Policy Type
cridcality[1] : CriticalityLevel
«Security Policy Assertion>> spa[1]: PolicyDescriptor
<<Observable Behaviors>> ob[0..1J: PolicyDescriptor
<<Mechanism» mechfO.I]; PolicyDescriptor
<<Policy Constraints» constrfO.1] : PolicyDescriptor

«stereotype»
•metactass*

atss
Interaction Partner

trusted[1]: Boolean
comp[1] : secComp | •"•Mam w>

•stereotype*
Configuration

partners[1 "]: Interaction Partner

•stereotype*
Dependencies

encrypt(in mech data : Data): Boolean
decryptEncryptedOataO ' Boolean
authorizetjn comp : Interaction Partner, in mech.data : Data): Boolean
backup(in mech.data * Data): Boolean
restoreFromBackupO : Boolean
logEventsfln comp Interaction Partner, in mech.data Data) Boolean

Figure 3: Component Policy Profile and Architectural Descriptors

• stereotype*Observable Behaviors

requestData<in fromComp : Interaction Partner); Data
sendData(in toComp Interaction Partner, in data : Data)
receiveData(in fromComp : Interaction Partner) Data
delegate Data(in toComp Interaction Partner, in data : Data)
transferData(in fromComp interaction Partner, in toComp . Interaction Partner, in data : Data)
shareData(in withComp Interaction Partner, in data : Data)
initializeExtemaiDeta(in toComp Interaction Partner, in data Data)
manageExtemalData(in toComp Interaction Partner, in data : Data)
broadcastData(out out Mech.data)

Typ.

•stereotype*
Model

type
complexity Long

• stereotype*
Data

data Name
length Long
initTime
version Integer

dataLength : Long
dataVali dityPenod : Penod
model Complexity Long

« stereotype*
Policy Constraints

check Data Lengthen Mech. data, length Long) Boolean
check Data Valid rty(m Mech. data. irotPenod) Boolean
checKModefComplexity(in Mech.model complexity Long) Boolean
allowlnitialization() Boolean
allowManagement() Boolean
allowSharmgO Boolean
allowDelegation() ; Boolean
allowTransfer() Boolean
allowSendO Boolean
allowReceiveO Boolean
allowRequestQ Boolean

•stereotype*
Mechanism

data Data
model Model
mode Mech Modes

initialize Internal Data(in struct Security Policy Assertion dataType, in type
managelntemalData(in struct Security Policy Assertion dataType. in type
destroy R as tdualData()

Security Policy Assertion. dataType)
Security Policy AssertioadataType)

•stereotype*
Security Policy Assertion

capability Boolean
interactivity Interactivity
interpretation ; Interpretation
response: Response
location Location
can-yMuitipieData Boolean
dataType DataType
data Reusability Reusability
dataStructure DataStructure

Figure 4. Component Policy Profile Policy Descriptors

12

Each Port can express all six security policy types. This model allows for
different policy properties to be expressed depending on what the exposed interface of
the component does and whether there is more than one. For example, pulling from a
database might be the exchange at one port and pushing data to another component for
processing might be at another port. Policy instantiations for SoS components is
accomplished by taking the policy specification and mapping it to the appropriate
descriptor entries as needed. For example, an audit policy defined for a component
necessitates the Security Policy Assertion attribute dataType to be set to audit record.

The CPP also involves the Object Constraint Language (OCL) [34] to establish
the formal definitions of the policy constraints and dependencies descriptors as well as
safety properties related to certification criteria. Figure 5 below shows an example of the
NIST AU-2(1) criteria statement written in OCL and formatted to evaluate over the CPP.
Criteria statements at this stage are not dependent on an instantiated CPP, and thus do not
require the SoS, its components, or the policies to be known until a compliance check is
performed.

Instantiating the CPP for each component represents the sum of the components'
security policies. Thus, the SCM framework allows a uniform view of security
governance from the component-perspective. Partial specifications of policies are
allowed and still contribute to compliance assessment.

Once instantiated CPPS can be reasoned about as composed unit by applying the
criteria in conjunction with OCL statements. The SCM framework offers the foundation
for a robust representation to determine the presence of incompatibilities and violations
of compliance with applicable security certification requirements. Incompatibility in the
case of the NIST AU-2(1) is shown by locating a component in the SoS that does not
contain an audit policy or that cannot communicate its audit records to another
component.

context: Policy
inv: Policy.alllnstances -» // Invariant for all policies in SoS

V p : Policy 1 p.name = "Audit" // For all policies of type "Audit"
^3

p.spa.stated A p.spa.dataType = "event" A p.spa dataStmct = "audit record" // Policy must be stated
A p.mech.operations—>exists("initializeInternalData") // initlniData operation must exist
A p.mech—>initializeInternalData(p.spa.dataStruct. p.spa.dataType) // Policy must use correct mechanism

context: InteractionPartner
inv: InteractionPartner.alllnstances —» // Invariant for all IPs in SoS

3 ipl, ip2 : InteractionPartner 1 ipl <> ip2 // ipl is not equal to ip2
A 3 poll : ipl.port.Policy, pol2 : ip2.port.Policy 1

poll.name = "Audit" AND pol2.name = "Audit" II Both policies are of type "Audit"
A pol 1.ob.operations—»3 "transferData"
A poll ob->transferData(ip2, poll .mech.data)
A ipl.port.comm.operations—»3 "sendDataOverConnector"
A ip 1.port.comm—>sendDataOverConnector(ip2, poll.mech.data) // ipl can send data to ip2
A ip2.port.comm.operations—»3 "receiveDataOverConnector"
A ip2.port.comm—>receiveDataOverConnector(ipl) II and ip2 can receive data from ipl

Figure 5: OCL Constraints on Component Policies for AU-2(1)

The OCL statements in Figure 5 are safety properties - constraints on the policy
capabilities. The first AU-2(1) constraint stipulates the requirement for components of
the SoS for maintaining audit records. This is stated by requiring that an audit policy

13

must be stated, that a mechanism in each component must exist to initialize the audit
records, and that the component policy must adhere to the correct mechanism for
recording audit information. The second constraint of AU-2(1) stipulates that components
must support the transfer of audit records to different components. The CPP model uses a
concept of Interaction Partners to establish communication between components. The
OCL constraint states that two components must be able to transmit their respective audit
records via connectors within the SoS. Understanding the full meaning of the OCL
statements requires the model over which it is defined. These constraints are directly
evident within the policy profile of the components and their interaction partners. Thus,
verification can performed when the certification criteria are expressed in the same terms
as the model.

2. Moving Toward a Formalism
Though the CPP was found to be well structured from a component perspective,

the use of OCL for the comparisons against security certification criteria was quite
cumbersome (as seen in Figure 5), even for basic safety properties. Therefore, concurrent
to exemplifying the model, we investigated the prospect of using a formal specification
language. This investigation included a formal definition of the SoS as a composition of
component properties, including their policies. However, no languages existed that
clearly modeled SoS in a way that would allow us to express security requirements as
safety and progress properties both locally and globally. Therefore, we first needed to
extend a language to accommodate the model constructs. We chose Context Unity [35], a
derivative of UNITY [36] as the base formalism because it has a proof theory associated
with its execution model. This section discusses the new derivative of UNITY, called X-
UNITY (pronounced Crass-UNITY), that captures programmatic, structural, and scoping
properties of SoSs [37, 38]. We apply similar examples from security audit criteria to
illustrate the application of the formalism.

2.1 Some Background in Context Unity
Specification formalisms for SoS must portray hierarchical composition, where

intermediate results can be formed and then further composed. We focus on Context
UNITY [35] which extends UNITY'S programming model [36] to include distribution
and interactions with an operational environment through context programs. The primary
unit of specification in Context UNITY is the program. Context UNITY represents
systems in both an imperative manner (using actual program statements) and a
declarative manner (stating program properties). In addition to its specification
constructs, it contains an execution model and a proof logic that allows temporal
reasoning. We review Context UNITY to the extent that is needed for our extension and
examples. Figure 6 shows its basic structure.

Context UNITY program, P, describes a state transition system consisting of
variable declarations (declare), initial values for variables (initially), and assignment
statements (assign). Statements are executed with weak fairness in that they are executed
non-deterministically, infinitely often.

14

System SystemName
Program P<parms >
declare

exposed // public variables
internal // private variables
context // handles to other public vars

initially // initial values for public/private vars
assign // programmatic state changes
context // programs that use context variables

// to interact with environment
endP

Components // the instantiated programs in the system
Governance // global impact statements

end SystemName

Figure 6: Context UNITY Specification Structure

The declare section is divided into variable types for exposed, internal, and
context. The context program following the assign section specifies how changes in the
environment's state are reflected in the values of exposed variables, which in turn can
influence another program's context variables. Thus, the context program provides
components with explicit and individualized interactions within their contexts. The
Components section is used to define Program instances. The Governance section
contains rules for behaviors that have a global impact on the system. These rules rely on
the state of exposed variables throughout the larger system to affect other exposed
variables in the system.

Given that programs are actually code, they must be instantiated to form a system.
A system may "run" many instances of a program. Program instances in Context UNITY
are distinguished by passing parameters (depicted by <parms>) during system
initialization that includes a unique instance identifier. Thus, Context UNITY provides an
initial foundation for structuring the specification of SoS designs.

2.2 Creating X-UNITY
A SoS retains constructs that are derived from its component systems. These

restrictions imply that candidate systems for inclusion in the SoS are isolated [38] prior to
the SoS being composed. For example, centralized functions may need to be merged
across competing/cooperating sub-systems. However, systems which are good candidates
for reuse in SoSs have little or no centralized control, facilitating the formation of
composites [39]. Therefore, constructs, such as centralized control, are strong indicators
of isolation and security compliance failure.

Given SoS characteristics, we must adhere to a specification framework that
provides a structure reflecting the concepts of scope, interaction, and reuse while
providing mechanisms to support reasoning and proof. The framework requirements
should (1) allow multiple architectures for governance and control [39], (2) represent
component layering and hierarchies, (3) include imperative and declarative viewpoints,
(4) express abstract design and their instantiations, (5) specify different interaction styles
(e.g. explicit, implicit, indirect) and (6) depict the concept of reuse of existing program

15

and system types to model the inheritance of software behaviors from classes or species
of software artifacts.

To define X-UNITY
1. We formally induce a hierarchy of module specifications to represent the

SoS configuration by augmenting the Context UNITY specification labels
of System and Program with SoS.

2. We differentiate explicitly between a system design specification and an
instance of the specification as a particular use of the design to reflect the
concept of reuse. This differentiation is done with the introduction of
include for reusing an encapsulated entity and System Instances as the
instantiation of Systems.

3. We allow program variable exposure outside of the scope of the reused
system through the introduction of promote.

These novel extensions allow X-UNITY to express a SoS so that it can be reasoned about
in the context of other systems, not just programs.

Figure 7 shows the basic structure for X-UNITY specifications, illustrating the
notation and hierarchy extensions. Though System specifications are similar to Context
UNITY, our introduction of include lets us refer to programs that may be specified
elsewhere. Thus, include allows the module name to represent its entire specification
template. This convention leads to simpler specifications of higher-level systems and
provides a consistent notation for reuse using module names. It also makes system
composition explicit in X-UNITY, which facilitates reasoning about SoS applications.

A similar convention is introduced at the SoS level that encompasses all modular
entities. Where a Program serves as a template for instances of Components in Context
UNITY, we extend this approach to include the instantiation of System specifications
into particular System Instances. Thus, when we name a system template as include
System, this name serves as a reuse symbol in another SoS. When we give an instance of
a template a unique identifier as in Components or System Instances, that instance may
be referenced explicitly during execution.

This makes a System a type, while a particular System Instance is a
parameterized occurrence of that type. A SoS describes a particular interacting set of
system instances. If a SoS is to be reused as a component of another system, it too can be
considered a System type if needed.

16

System SystemName
include Program ProgramName 1
include Program ProgramName2

Components // specific program instances
// ProgramName 1 (1),..,ProgramName(n)

Governance
promote x as w in *

end SystemName

SoS SoSName
include System SystemName 1

System Instances
// configuration of specific system
// instances within the SoS

end SoSName

Figure 7: X-UNITY Basic Specification Structure

The notational extension of promote alters the scope of the exposed variable x to
include all systems (*). Promote makes x available under the alias w in a system s such
that w e s.exposed; where v.exposed is the set of names for all exposed variables
available in s. Alterations to the var [] table in Context UNITY for defining exposed
variables are needed to formally represent promote. For x's scope to now include s
means that a Program in s can select the variable x using its attributes, including its
aliases, in the Program context rules.

Promote appears in the Governance section of a System. Recall that systems are
allowed to have system-wide governance, while SoSs are not. This approach conforms to
the definitions of a SoS as a collection of autonomous systems. Thus, promote is a core
concept for X-UNITY to provide a form of selective composition. It helps capture the
unique compositional properties of systems in a SoS. If two systems are formally
composed in UNITY, it is done by a union theorem that forces all exposed variables to be
public to other systems. The pairing X-UNITY's promote with Context UNITY'S uses
rules constrains this formal union to make it possible to achieve more remote interactions
with components that are in a local environment. This induces a reaction based on
context variables that are quantified over the local environment via uses. If such
constructions are effective, they create good SoS, even when the elements of the
composition are heterogeneous.

2.3 Modeling the SoS Hierarchy
We reuse the security audit criteria from Table 3 within a distributed systems

environment as a vehicle for exercising the features of X-UNITY. We take a more global
perspective that is rendered in the CPP. We first specify a system of components that
capture detected auditable events and generate event notifications within X-UNITY. We
limit the code specification to only security audit properties.

Notifications are retained in an exposed variable, notify, for later review by
auditors. The notify variable can be any type of local storage that is accessible to other
programs. Here, it is a set of audit records, each of which is an ordered pair with a

17

timestamp and audit information fields, such as the type of event and the component
identifier. The function detectEvents() returns the set of events detected in the local
environment since it was last invoked. In AuditableComponent (Figure 8), once the
events are saved in notify there are no further state changes.

Program AuditableComponent
declare

exposed
notify: Set of AuditRecord

initially
notify := 0

assign
notify := notify u detectEventsQ

end AuditableComponent

Figure 8: The Program AuditableComponent

AuditCollector (Figure 9) uses a context variable, auditCache, to collect the
notifications from components in its same system with the exposed variable, notify,
where notify contains notifications that are not yet in the audit trail. Thus, it does not
execute as a stand-alone component. The uses statement "loops" over all p, in which n is
local to the scope of the loop. Effectively, component interfaces are advertised by their
exposed variables and selected for use by the quantification of uses context rules.

In AuditCollector, variables named notify are selected from all programs p that
satisfy the given clause and are bound to the handle n. The "!" notation is used to
associate a temporary handle, n, to each matched instance of notify. Becomes is
assignment (from Context UNITY). The auditCache values are eventually assigned to the
exposed variable auditTrail using the statement in the program's assign section. Weak
fairness of UNITY's execution model assures that all statements are selected for
execution infinitely often. Given the rules in its context program, other components, such
as those that instantiate AuditableComponent, must provide their audit notifications as
exposed variables for collection.

Program AuditCollector
declare

exposed
auditTrail: Set of AuditRecord

context
auditCache: Set of AuditRecord

initially
auditTrail, auditCache := 0, 0

assign
auditTrail:= auditTrail u auditCache

context
auditCache

uses n!notify in p
given —in s auditCache)
where auditCache becomes auditCache u n

end AuditCollector

Figure 9: The Program AuditCollector

18

In Figure 10, we specify a System of the components in Figure 8 and Figure 9
using the include statement to indicate reuse by copy of the previously defined program
types. Without include, we would have to repeat the entire program specifications within
the system. Reuse results in more complex specifications because all relevant component
information must be considered. Therefore, the benefit of include is that it provides a
construct for better management of these complex system representations, while
mimicking actual reuse and composition.

System CollectedAuditSystem
include Program AuditableComponent
include Program AuditCollector
Components

<• i :: AuditableComponent(i))
• AuditCollector

end CollectedAuditSystem

Figure 10: The System CollectedAuditSystem

A program template (named within an include statement) is instantiated in the
Components section as needed. Instances have unique identities that make them
available for later reuse as services by other systems in the SoS specification. The
notation 'D i ::' means that there are T AuditableComponents that execute
asynchronously, each with a unique identifier.

To show the compliance of CollectedAuditSystem with the requirement of AU-
2(1) in Table 3, we formulate a UNITY progress property (PI below) to generically state
that eventually there is at least one component which has the complete representation of
a system-wide audit trail. This requirement is apparent in the decomposition in Table 4
where the use of the Configuration descriptor is shown. In OCL, the statement can only
be that each component has the capability to transfer and there exists a component that
can collect them. However, the leads-to property is not specifiable in OCL, because OCL
can only represent safety constraints. Moreover, the leads-to property is global and
concise. That is the beauty of the UNITY language. Because we have retained the
UNITY execution model, we have use of its temporal proof logic. A "dot" notation
expresses the hierarchy of modules and variable names within the X-UNITY
specification.

(PI) 3c G CI <Vr e Clee t.notify leads-to e G c.auditTrail>

Given the system CollectedAuditSystem the statement PI reasons over all program
components (V7 G Q that are reused within a composite system, such that when t
receives an event (e G t.notify) there is at least one component (3c G C) that will
eventually acquire the event in its audit trail {e G c.auditTrail). Without the X-UNITY
extensions, this statement would not be easily expressible or provable, and further
reasoning about SoSs would prove difficult. It can be directly seen that auditTrail in
AuditCollector of CollectedAuditSystem contains all notifications from all i, such that
AuditableComponent(i), to comply with PI.

19

2.4 Verifying Compliance of a SoS in X-UNITY
Figure 11 introduces a simple SoS specification as a composition of system

specifications, showing X-UNITY's capability to explicitly denote the structural
relationship between a SoS and its component systems. In Figure 11, SoS ASReplicas
includes multiple system instances of CollectedAuditSystem (Figure 10).

SoS ASReplicas
include System CollectedAuditSystem
System Instances

(0 i:: CollectedAuditSystem(i))
end ASReplicas

Figure 11: The SoS ASReplicas

The constraints of X-UNITY force system-to-system interactions to be made
more explicit representing the abstract composition of Configuration descriptors. This
convention provides a degree of encapsulation where systems have an inherently defined
individuality even if they interact in larger systems. Compositions occur via well defined
interfaces at the Port (in the CPP) are explicitly exposed and controlled by processes and
policies designed for those types of interactions.

In the case of SoS ASReplicas in Figure 11, each individual CollectedAuditSystem
can be proven to satisfy PI. Thus, each component complies locally with the audit
criteria. However, when reused as multiple instances of a system, SoS ASReplicas fails to
satisfy PI. Each system expects to actively use external information but does not allow
access to their internal information. This abstraction would be included in the CPP's
mechanism descriptor.

The result is the lack of a SoS-wide audit trail. This occurrence is because each
AuditCollector within each CollectedAuditSystem maintains an audit trail with the records
confined to events detected within each component system. This result is a deliberate
artifact of modeling systems as autonomous entities that are, by default, closed. However,
X-UNrTY relies on explicitly declared shared variables to define system-to-system
interactions at the SoS specification level.

To overcome the violation so that SoS ASReplicas complies with PI, we add to
Figure 10 a Governance section and introduce promote to make an exposed variable
explicitly visible to other systems. This results in System CollectedAuditSystem-2 as
shown in Figure 12.

System CollectedAuditSystem-2
include Program AuditableComponent
include Program AuditCollector
Components

(D i :: AuditableComponent(i)) D AuditCollector
Governance

promote AuditCollector.auditTrail as notify in *
end CollectedAuditSystem-2

Figure 12: System CollectedAuditSystem-2

The promote statement elevates visibility of specific exposed variables from the
System level to the SoS level. Its use requires clear design intent. Here it is the

20

certification criteria represented by PI that guides the choice of the auditTrail variable to
be renamed as notify in order to allow its reference by existing logic in peer systems. This
guidance indicates the key influence that the security certification criteria have on model
expression, development, and compliance verification. As seen in the earlier sections on
the CPP, if the criteria cannot be expressed in the model, then there is no comparative
verification that can be directly performed. The investigation into the X-UNITY
extension goes further to indicate that the formal expression of security criteria actually
guides the model change, if practical, once the non-compliance issue is identified. In this
case, it is all peer systems as denoted by 'in *'. The peer systems are selectable under
quantification by uses statements in the context programs of peer systems within the SoS.

With this introduction of the Governance section and the promote statement,
every AuditCollector component (Figure 9) can access the notifications from each
AuditableComponent (Figure 8) within its respective system, as well as the top level audit
trails of every other copy of CollectedAuditSystem-2 (Figure 12) within the SoS
ASReplicas (Figure 11). As an alternative to this centralized approach, notify in each
AuditableComponent could have been promoted. However, we choose a centralized
design via the Governance section because it more closely follows the design approach
of making system level interfaces explicit. Promoting auditTrail and renaming it to notify
allows the system to be reused as a component in the hierarchy, while preserving PI over
system quantification.

Note that governance, or control, is either modeled explicitly within a special
section of X-UNITY or implicitly through the cooperating code of multiple programs. By
definition, it is rare to apply explicit governance to SoS models. Our Context UNITY
extensions promote governance rules across the full spectrum of modeling unit
granularities (programs, systems and systems-of-systems). For governance to occur
explicitly, it must be implemented "outside" the modeling construct (e.g., within the
environment) in question. For governance to occur in the SoS, each contributing system
must accept some degree of outside control. This control can be in the form of various
types of integration middleware that "glue" the systems together. The middleware itself is
part of the SoS solution that can be modeled as (1) a subsystem in and of itself or (2) a
"governance" function represented explicitly outside of the other SoS parts.

Extending the audit example further, we introduce multiple systems that satisfy
the requirements yet do so using different algorithms and system structures. These
systems are composed into a larger SoS which may be examined to confirm or deny
whether the SoS also satisfies the requirements at the global system level.

21

Program AuditConsumer
declare

exposed
auditTrail: Set of AuditRecord

context
auditCache: Set of AuditRecord

initially
auditTrail := auditCache := 0

assign
auditTrail := auditTrail u auditCache :
auditCache := 0

context
auditCache

uses nlnotify in p
given -i(n s; auditCache)
where auditCache becomes auditCache u n
0 impacts n

end AuditConsumer

Figure 13: Program AuditConsumer

The program AuditConsumer (Figure 13) reproduces much of the logic of
AuditCollector (Figure 9). It differs by 'consuming' the audit events once they are copied
to the context variable auditCache. The variable notify remains the source of audit
records in other components throughout the system. Now, notify is cleared by an impacts
statement in the context program. This behavior is captured in Figure 14,
ConsumedAuditSystem, that instantiates Auditable-Component (Figure 8) and the central
AuditConsumer to gather the audit records for the entire system.

System ConsumedAuditSystem
include Program AuditableComponent
include Program AuditConsumer
Components

(D i:: AuditableComponent(i))
D AuditConsumer

Governance
promote AuditConsumer.auditTrail as notify in *

end ConsumedAuditSystem

Figure 14: System ConsumedAuditSystem

We specify the SoS ConsumeCollectHybrid (Figure 15) as an SoS of both
collecting and consuming audit system types. One collects audit records while leaving
their original variables undisturbed, while the other consumes such records and
continually clears the source variables. Both report the results as exposed variables
named auditTrail and promote these variables to peer visibility at the SoS level.

22

SoS ConsumeCollectHybrid
include System CollectedAuditSystem-2
include System ConsumedAuditSystem
System Instances

<D i : 1 < i < N :: CollectedAuditSystem-2(i))
D (0 j : 1 <j < M :: ConsumedAuditSystem(j)>

end ConsumeCollectHybrid

Figure 15: SoS ConsumeCollectHybrid

Recall that SoS must satisfy requirements as if they were a single system while
not violating properties in their component systems. While the top level audit trail created
in the ConsumedAuditSystem (Figure 14) satisfies PI, the individual audit trails of its
instances in Figure 15 are no longer valid. Their collection algorithm is interfered with by
the consumer algorithm within AuditConsumer programs in ConsumedAuditSystem
instances. When the auditTrail variables are promoted as notify, they too become subject
to the impacts statements in the context rules of AuditConsumer programs and are set to
empty sets. This violates PI for component systems of the SoS. Specifically, instances of
CollectedAuditSystem-2 fail since they no longer have a system-wide audit trail after
execution of the impacts statement.

The investigation into expressing security certification criteria as progress
properties that span the SoS shows two important details. The first is that certification
criteria remain in need of a uniform framework for expression type (safety and progress)
and designation (local to the component and global to the SoS). Our two models, the CPP
and the X-UNITY language, are built on the same foundation of multi-component
interaction and behavior expectations. However, one is better at functional representation
and the other is better at policy object descriptions. A reconciling of the two along with a
methodology for expressing the policies and criteria accurately and completely is still
needed for a comprehensive framework.

3. Exploring Access Control Policy Conflicts
Access control policies are defined as a set of individual rules (functions

providing privileges) applied to requests from subjects (users) to perform certain actions
on a particular set of objects that require a particular access right [40J, [41]. Access is
granted if the rule evaluation provides privileges for the access requested by the subject.
Each component system has its individual access control policy described in terms of
hierarchical, separation of duty (SoD), cardinality, and/or time assignments and
constraints. The role hierarchy defines seniority among the roles, while SoD constraints
restrict access to mutually exclusive operations. Cardinality constraints add numerical
restrictions to allowable accesses to a system, and timing, or temporal, constraints define
access over a given time interval.

Vulnerabilities related to access control have been defined and organized into
different categories that facilitate their detection and resolution [42]. We assume secure
components have a domain in which there are no conflicts among their policies. Security
vulnerabilities present themselves as policy conflicts or violations that occur due to inter-
domain mappings, the access control mappings between local component system

23

domains. Inter-domain access is more specific to the integrated systems where subjects
from one component domain try to access objects from another component domain. Inter-
domain mappings can also define further restrictions on inter-domain access such as user-
role assignments, SoD, role hierarchy, cardinality, and time [43],[44],[45]. With the inter-
domain mapping in place, it is possible for access to remain undecided from the
integration and for new access decisions to disagree with locally defined policies.

We introduce the Conflict Petri Net (ConPN) to analyze inter-domain access
control mappings for SoSs and evaluate their potential to introduce violations to this
specific authorization security policy and its internal details. These details are neither
local component policy attributes or mechanisms (for representation in the CPP) nor
function based for global compliance (for representation in X-UNITY). Instead, they are
a third dimension of security certification because they are attached to a policy to govern
internal processing that is not available at the exposed interface. Therefore, a different
type of analysis is needed to indicate where policy violations may occur.

We show formally how ConPN denotes inter-domain policy violations for Role-
Based Access Control (RBAC) systems. Specifically, ConPN examines role inheritance.
SoD, cardinality, and temporal policy constraints for compliance. We indicate the
violations using their formal definition within ConPN.

3.1 Role Based Access Control and Petri Nets
Role-Based Access Control (RBAC) is commonly used to define access

parameters within components and combinations thereof. This definition creates rule-sets
of permissions, assigns the rules to roles, and then assigns roles to users [46]. The robust,
low-maintenance, and efficient nature of RBAC systems allows for simple modeling of
many constraints including hierarchical, SoD, cardinality, and temporal [47]. RBAC
systems have noted limitations that should be addressed in integrated system security
analysis [48], [43]. Because each user of a system takes on an assigned role, roles should
be defined based on how the organization works. Inheritance may be ambiguous when it
does not correspond to an organization's hierarchy [48]. Context is not included in role
assignment constraints, which can be eased if traceable origins of inherited access are
maintained across domains of the integrated system.

A role hierarchy is a partial order relationship established among roles, through
which access is granted. SoD constraints define mutually exclusive relations between two
entities. Each individual is authorized or not authorized to have access based on the role
he or she has been assigned, allowing a system to restrict access to authorized users and
manage those permissions associated with groups of users easily by mapping users to
roles. Other constraints can be used to restrict access to no more than a specified number
of users (cardinality constraints) or to be granted during specific times (temporal
constraints).

We graphically represent RBAC systems using the convention where users and
roles are nodes in the graph and the connections between them are directed edges, called
mappings. The arrow connecting a user to a role represents assignment and the arrow
connecting a role to a role represents a hierarchy. Figure 16 illustrates this concept. Role
H inherits the permissions given to r2. Due to the temporal constraint on the mapping
between n and r2, x\ only inherits from r2 on Monday, Tuesday, and Wednesday. Because
r2 inherits privileges from r3, X\ also indirectly inherits permissions from r3. Role r3 does

24

not inherit from any other roles. User 1 is given all permissions defined for roles ri and r.i
because of the user-role assignment to ri and the role hierarchy between ri and r^. The
cardinality constraint on r3 indicates that only one user is allowed to have rj's privileges
at a time. This means that if another user is assigned to any of the other roles, due to
inheritance, this constraint would be violated. The mapping between roles r3 and u is
considered an inter-domain mapping because it spans from one domain to another.

Domain B

Superior
Permission Inheritance

Figure 16. Role Hierarchy and Permission Inheritance

Petri Nets describe systems at various levels of abstraction, and when combined
with the ability to represent hierarchies, modeling complex systems becomes much easier
[49]. Petri Nets are bipartite directed graphs, making it easy for modeling and formal
verification. The theory behind Petri Nets allows flexibility to extend existing models
once they conform to the basic Petri Net constraints. Moreover, they can capture both
static and dynamic aspects of a system, which is not possible in other techniques like
graph-based models.

A Petri Net is a graph, GPN = (V, E), where the set, V, of vertices is comprised of
places and transitions and E is the set of edges, or arcs between them. A place is never
connected to another place directly, and transitions are never connected to another
transition directly. Places are static entities. Transitions represent dynamic entities
because the transition firing rules can change the contents of the tokens that flow through
the Petri Net. A Petri Net is a 3-tuple:

PN = (P, T, F) such that
P: Set of places, P c V
T: Set of transitions, TcV,PnT = 0
F: Flow relation for arcs, F = (P x T) u (T x P), F Q E

We define the following specific Petri Net entities
• Input Arc: Flow f represents an input arc for transition tr when f = (p, tr) such that

f e F, p e P, and tr e T because it flows from a place into a transition.

• Output Arc: Flow f represents an output arc for transition tr when f = (tr, p) such
that f € F, p e P, and tr e T because it flows from a transition to a place.

• Input Place: p € P is an input place when it is connected to a transition tr e T
through an input arc.

25

• Output Place: pe P is an output place when it is connected to a transition tr € T
through an output arc.

There can be multiple input and output places for a given transition, which then
forms a set of input places and a set of output places. In the most basic transition, tokens
flow from all input places into all output places, even if the number of input and output
places differs. Graphically, a place is represented by a circle; a transition by a rectangle
or a bar; and an arc with an arrow (Figure 17).

Transition

Input Places

I
I
I

Output Places
l
i

Input Arcs Output Arcs

Figure 17. Basic Petri Net
Token: A token is the entity that flows within an executing Petri Net, represented
by small dots inside a place.

Enabled Transition: A transition becomes enabled when all its input places have
at least one token.

Fired Transition: An enabled transition is fired (Figure 18) upon removing the
tokens from the input place and placing them into the output places according to
the firing rules.

Figure 18. Transition Firing

Executing a Petri Net is moving a set of tokens through the graph via transition
firing rules. A Petri Net executes while it has enabled transitions that can be fired. This is
known as a liveness property of a Petri Net. When a Petri Net reaches a state where no
transition can be fired, it is known to be dead. Colored Petri Nets allow distinguishable
tokens by assigning a particular color to a token [46]. They also introduce the concept of

26

arc-expressions, binding variables, and guards. These improvements dramatically
increase the overall expressive power of Petri Nets by bringing them closer to
programming languages.

color set
{red, green}

constants:
r.Q

variables:
X

Figure 19. Colored Petri Net

In Figure 19 we can see how a color set is defined. In our ConPN, we use this
concept to place necessary information within tokens so that conflicts can be found. Here,
place PI can hold red or green tokens. The arc between PI and Tl allows only green
tokens and the arc between PI and T2 allows only red tokens. In this case, the token color
represents a data type, and each place, transition, or arc can place requirements as to what
color/type of token can exist on it. Place P2 does not put any restriction on what color the
tokens need to be, and the variable X can be either red or green. The transition T3 has a
guard expression and is known as a guard transition. Depending upon the guard
evaluation, the transition will fire or not fire. This means that if X is red, then T3 will fire,
putting the token into place P3. Similarly, arcs also can have arc expressions whose
functionality is the same as guard expressions.

3.3 Inheritance Policy Conflicts
We define an inheritance policy as a 4-tuple, InheritancePolicy(U, R, SoD, M)

such that
U: Finite set of Users
R: Finite set of Roles
SoD: Finite set of role based SoD requirements expressed as a triple (u, ri, r2)

where ue (/ and {ri, r2} c R
M: Finite set of user-to-role and role-to-role mappings (or assignments) with

cardinality constraints expressed as triples (u, i\, n) or (ri, ri, n)
where u e U, {t\, T2} c /?, and n e K.

A role in R can have a restricted cardinality or may allow infinitely many users in
U to have access. A SoD requires at least two roles in R to indicate that the same user in
U cannot be involved in both at the same time. If a mapping in M has a temporal
constraint, then the inheritance of a role is restricted to a certain time interval as
expressed by a natural number. If the is no temporal constraint, then n = 00.

Let IPA and IPB be the inheritance policies of domains A and B, respectively,
which may represent independent components. Let EPj0jn be the inter-domain mappings
that tie the access policies together.

Let IP = IPA u IPB U FPjoin be an inheritance policy. An inheritance conflict exists
when a role inherits permissions it should not be allowed to have. This generally occurs
with an incorrect role hierarchy between superior and inferior roles

Conflicts of interest exist when entities (users or roles) should not be instantiated
at the same time and are either directly or indirectly allowed to do so because of faulty

27

inter-domain mappings. Conflicts of interest are often forcibly prevented by including a
SoD constraint on roles. If SoD lines are incorrectly mapped, when two domains are
combined into one system, a role may be accessed by two conflicting users at the same
time [50].

Cardinality and temporal constraints extend the conflict of interest constraints
with time and assignment number restrictions. Cardinality constraints assign an upper
limit to the number of users assigned to a role at one time. Temporal constraints assign
certain time-periods for which a mapping is valid. A temporal conflict arises if a
particular user can be assigned to a specific role that does not have equivalent temporal
units. If this is the case, then either the user can access the role at a time that is not
permitted or the role is incorrectly unavailable to the user.

We have augmented an example initially published in [43] to demonstrate the
conflicts defined above and how they are depicted in ConPN. Figure 20 depicts access
control policies of Domain A, Domain B, and the inter-domain mapping between A and
B.

Domain A

M. W, Th. F = weekdays

U4

UG

Domain B

Figure 20. Motivating Example

28

Thus, IP = IPA u IPB U IPjoin where

IPA = (UA, RA, SODA, MA), such that
UA = { ui,u2, u3},

RA = { TiA, T2A, T3A, ^A},

SoDA= {(ui,riA, r2A)},
MA = { (ui,riA,°°), (ui,r2A,°°), (u2,r2A,°°), (u3,r3A,°°), (riA,r4A,°°), (r4A,r3A,°°)}

IPB = (UB, RB, SODB, MB), such that
UB = {u4, U5 },
RB = {TIB, T2B },
SoDB = {},
MB = {(u4,riB,«>), (u5,r2B,°°), (riB,r2B,M-Th)}

IPjoin = (Ujoin, Rjoin, SoDJoin, Mjom), such that
Ujoin={},

Kjoin = i />

SoDjoin= {},
Mj0in = {(riB,r2A,«>), (riA,riB,°°), (riB,r4A,F), (r2B,r4A,W-Th), (r3A,r2B,°°)}

The inter-domain mapping, denoted by Mj0i„, induces all five types of conflicts to
occur. We show how ConPN can detect the potential for these conflicts. Using a Petri Net
allows us to separate concerns among conflict types and form our model atop a
commonly accepted formal technique. This process is an improvement over manually
scanning graphs or XML documents to find conflicts, such as in [43] where only conflict
resolution is automated.

Access control conflicts can allow the most unqualified user access to the most
sensitive information if even one mapping is incorrectly specified. Depending on the
sensitivity of the system, this could allow information leaks that affect a company's
survival against competition or it could threaten national security by allowing attackers
into sensitive government systems. The goal of ConPN is to guarantee that all policy
conflicts are found, which is the only way to definitively say that a system's access
control is secure. Thus, the approach will err on the side of false positives, rather than
missing any potential conflict. Realizing the consequences of improper access, the
operation of ConPN is designed to monitor a user's access path to indicate what roles a
user has been given access to. This eases conflict resolution as it helps isolate where in
the Inheritance Policy faulty mappings have occurred.

3.5 Constructing the Conflict Petri Net
We build upon the foundation of Colored Petri Nets to create the Conflict Petri

Net, ConPN. ConPN requires extensions to the definitions of places, tokens, and arcs
without interfering with the basic rules of execution and analysis of the Colored Petri
Net. We formally define the transition rules that underlying the perspective-based,
conflict detection mechanism. The structure of ConPN represents role-based access
control policies easily and completely.

ConPN is a graph, D = (P, A), where vertices are comprised of start places, role
places, and choice places and edges are comprised of input and output arcs. Tokens show
the policy in motion by flowing from place to place using transitions and firing rules to

29

traverse the arcs. ConPN retains meta-data based on token movement and the roles
visited to determine if a state can be reached that indicates a policy violation.

Places. A place is defined as follows:
Place = (ID, CurrTk, TkLog) such that

ID: Unique place identifier
CurrTk: Current token set at place
TkLog: Bag of tokens that have visited the place, can be null

The set of all places, P, in ConPN is partitioned into Normal and Choice places.
Normal places are further partitioned into Start places (SP) and Role places (RP). The set
of Choice places (CP) simulate the controlled access to certain roles for the specified user
as dictated by SoD requirements. Choice places differ from start and role places because
they embody these essential policy constraints. Thus,

SP cz P A RP c P A CP c P A (SP n RP n CP = 0)
All users have a 1:1 mapping with Start places in ConPN, signifying user access

to the system. All roles in IP have a 1:1 mapping with Role places. SoD constraint triples
have a 1:1 mapping with Choice places. For example, the inheritance policy represented
by Figure 20 translates into five Start places with IDs {u\, U2, U3, 114, U5}, seven Role
places with IDs {riA, TZA, KA, T4A, HE, ^B}, and one Choice place, {rsodi}.

The cardinality of each place in P is determined by the function C: P-> K, which
maps a place to a natural number indicating the maximum number of tokens allowed to
flow to that place. If no cardinality restriction for some place p e P exists, then C(p) = °°.
In our example, only one role, T^A, in Figure 20 has a cardinality restriction, such that
C(r3A) = 2.

Figure 21 shows the organization of the places in ConPN that correspond to the
example in Figure 20.

Tokens. In ConPN, tokens represent the execution semantics of the inheritance
policy. Tokens facilitate snapshot and post execution analyses that identify inter-domain
policy conflicts. Their values can be updated and evaluated throughout the ConPN
execution. Similar to tokens in a Colored Petri Net, tokens in ConPN are distinguishable
from one another. Let TK be the set of all possible tokens allowed in the ConPN. We
define a Token as follows.

Token = (Type, Origin, Time, RLog, ConflictID) such that
Type: normal or choice
Origin: Origin of this token, start or choice place
Time: Temporal Unit, initially empty
RLog: Bag of roles, initially empty
ConflictID: Set of place IDs

There are two types of tokens, normal and choice. The origin of the token
indicates where the token starts, i.e., a start or choice place. Every start place has exactly
one normal token that originates there (recall the 1:1 mapping of user to start place).
Every choice place has exactly one choice token that originates there (recall the 1:1

30

mapping of SoD requirements to choice places). Figure 21 shows the initial token
placements for the example. The token time is the current temporal unit held by the token
as seen in Table 5 and is initialized to the empty set. As normal tokens move through the
ConPN, they collect the IDs of the roles visited in RLog. This is a bag because normal
tokens can visit the same role multiple times and each visit is recorded. RLog is initially
empty. Choice tokens work to model SoD conflicts. Since these token types are restricted
in their movements, they use ConflictID to initialize the role places that cannot be jointly
accessed. ConflictID is always empty for normal tokens.

Since start places and choice places in ConPN are each initialized with a single
independent token of the proper type. When a start or role place has multiple output arcs,
it replicates its token for each output arc. An example of this is role HB in Figure 21 in
which a token from ria or 114 will be replicated. In contrast, a choice place does not
replicate tokens.

Table 5: Initial Tokens and Places

Tokens Places
tk, =("normal",ui,0, 0, 0) U|

tk2 = ("normal",u2,0, 0, 0) U2

tk3 = ("normal",u3,0, 0, 0) U3

tk4 = ("normal",u4,0, 0, 0) u4

tk5 = ("normal",u5,0, 0, 0) u5

tk6 =("choice",rsodi,0, 0, {TIA^A}) rsodi

Transitions. As defined for the basic Petri Net, places are not directly connected
to other places. Tokens must flow through a transition in the set T, from an input place to
an output place according to transition firing rules. In ConPN, we extend the concept of a
transition to include a function Temporal: T —> TU, which maps a transition to a set of
temporal units from the power set of all such units, TU. These temporal units indicate the
constraints on the time at which the transition's input place can pass a token to its output
place.

Each role assignment in the inheritance policy (visualized by a directional arrow
in Figure 20) has a corresponding transition, directly mapping to 14 transitions. We add
to the set those transitions supporting the Role SoD. For the each Role SoD triple in the
inheritance policy (ui, TIA, ^A), we include a new transition to each choice place that
branches to those transitions associated with the competing role assignments. Thus, from
our example, we introduce transition tris between T\A and rsod|. The final set of ConPN
transitions generated by the inheritance policy in Figure 20 is T= {tri, ..., tr^}.

Arcs. Recall that an input arc connects a place in P to a transition in T and an
output arc is directed from transition to place. Let Arc be the set of all arcs in the ConPN.
To create the notion of SoD that disallows access to a role because access has been
granted to a competing role, we provide each arc with a status by defining Status: Arc —>
{"active", "blocked"} to indicate if an arc is valid to transition a token from one place to
the next.

Figure 21 shows the complete ConPN generated from the same inheritance policy
as the example in Figure 20.

31

Domain A Domain B

Figure 21. Example ConPN

Transition Firing Rules. As the ConPN executes, a transition firing rule
analyzes its places, tokens, and arcs to dictate the flow of the tokens throughout the net.
Tokens can flow in parallel. We tailor the transition rules so that the movements of
tokens through the ConPN imitate the access granted through IPA, rPB, and EPJoin. The
transition firing rules reflect the Inheritance, SoD, Cardinality, and Temporal constraints.

We use a precondition/postcondition format to express the transition firing rules.
Notationally, ":=" is pseudo code for gets, "/*' represents set delete, and "0" represents
bag union. Only changes to entities are detailed in the postconditions, whose statement
order is meaningful.

Transition firing rule TR1 moves a normal token (tk) from a normal or start input
place (p\) to the transition's (tr) output place (p2) that may be of any type. Token and
place meta-data (CurrTK, RLog, and TkLog) are updated. If the transition has defined
temporal restrictions, the temporal units of the normal token (Time) take on the
intersection of the time units associated with the transition as dictated by the security
principle [40]. Arc status is unaffected by TR1. We formally define the conditions under
which TR1 fires as follows.

For tr e T;tke TK; arc\, arc2 e Arc; p\e SP u RP; p2 e P

Preconditions:
arc\ = (p\,tr) A arcz = (tr, p2) A Status(arci) = Status(arc2) = "active"
tk e p\.CurrTk A tk.Type = "normal"

Postconditions:
pi.CurrTk :=p\.CurrTkl {tk}
pi.CurrTk := p2.CurrTk 0 {tk}
p2.TkLog :-p2.TkLog 0 {tk}
tk.Time := tk.time n Temporal(fr)
tLRLog := tk.RLog 0 {p2}

32

This transition firing rule, TR1, executes when there are active arcs connecting
two places with a normal token being moved between them. The place (p\) containing the
token is either a start place (SP) or a role place (RP). The place where the token moves
(p2) can be any place within the ConPN. After the transition fires, the p\ deletes the token
from its set of current tokens (p\.CurrTk). The token's time constraint (tk.Time) is
updated to match the temporal units of the transition being fired. The token also updates
its log of visited roles (tk.RLog) to include p2 and the token is added to p^'s set of current
tokens (pi.CurrTk). Finally, the token log for p2 is updated to include the token
(pi.TkLog). Figure 22 depicts the resulting changes in the ConPN when TR1 is applied to
transition trg.

status i
active

r18.CurrTk = (tk.)

tr»
tu = F

tki.Type = normal

Before TR1 applied to Transition tr9

r«.CunTk = (tk.)
status •
active

tkj.Time = F
tlc.RLog = {U4, rtB. r«)

tr.
tu = F

r,B.CunTk = {)
status =
active ,

r,B.TkLog = (tk4)

After trg fires according to TR1

Figure 22. Transition Firing Rule TR1 as Applied to Transition in.

Transition firing rules TR2 and TR3 both rely on a choice place as their input
place to enforce the restriction implicit in a role-based SoD requirement. TR2 dictates the
firing of the transition to move a normal token (tk) to a chosen role (r) when it resides at
the choice place (c) where a choice token (ctk) also resides.

The choice token must be forced to move to the alternate role where it stays for
the duration of the execution. The enforcement occurs because TR2 changes the state of
output arc (arc\) that the normal token uses to "blocked." The choice token then has only
one active arc to leave the choice place. TR3 dictates the firing of the choice token (ctk),
relying on the firing of TR2 as indicated by the presence of a blocked arc (arc\). For a
conflict to exist there must be a secondary path to the non-chosen role. Hence, if the same
normal token arrives at the place where the choice token newly resides, then the SoD
requirement is violated.

33

TR2 fires under the following conditions.
For tr G T; tk, ctk e Token; arc\, ara e Arc; c e RSoD; r e RP

Preconditions:
arc] = (c,tr) A arc-i = (tr,r) A Status(arci) = Status(arc2) = "active"
{tk, ctk) cz c.CurrTk
tk.Type = "normal" A ctk.Type = "choice" A ctk.Origin = c

Postconditions:
c.CurrTk := c.CurrTk I {tk}
status(arci) := "blocked"
r.CurrTk := r.CurrTk 0 {tk}
r.TkLog := r.TkLog 0 {tk}
tk. Time : tk. Time ATemporal(fr)
tLRLog := tk.RLog 0 {r}

Transition Firing Rule TR2 applies when there are two active arcs {arc\, arci)
connecting a choice place (c) to a role place (r), where the choice place contains both a
normal token (tk) and a choice token (ctk). The choice token originates (ctk.Origin) at the
choice place where it is residing. After TR2 fires, the choice place removes the normal
token (tk) from its set of current tokens (c.CurrTk). The token adopts the temporal
constraints of the transition (tLTime), the token's log of visited roles (tLRLog) now
includes the role place (r), and the token is added to the role place's set of current tokens
(r.CurrTk) and its log of tokens (r.TkLog). This rule additionally sets the status of the arc
between the choice place and the transition (arc\) as blocked. The choice token's
existence is necessary to determining if TR2 is enabled, but the choice token is moved
separately using TR3, described next. TR3 fires under the following conditions.

For tr\, trj e T; ctk € Token; arc\, arc2, arcj e Arc; c e CP; r e RP

Preconditions:
arc\ = (c, tr\) A arc-i = (c, tri) A arc-i = (^"2. r)
Status(arci) = "blocked"
Status(arc2) = Status(arc3) = "active"
ctk e c.CurrTk A ctLType = "choice" A ctk.Origin = c

Postconditions:
c.CurrTk := c.CurrTk I {ctk}
ctk.ConflictID := ctLConflictlDI {r}
r.CurrTk :- r.CurrTk 0 {ctk}
r.TkLog : = r.TkLog 0 {ctk}

The choice token is moved by TR3, which by definition can only be applied after
TR2 is fired. This is because of the precondition that an output arc (arc\) from the choice
place (c) is blocked. The choice token (ctk) must both originate from and currently reside
in the choice place. Once TR3 fires, the choice token is removed from the choice place
(c.CurrTk) and the set of conflicting id's (ctk.ConflictID) is changed to omit the role
place (r) where the choice token now resides. Only the alternate role is left in the

34

ConflictID set. There are no transition firing rules to move the choice token. Thus, if a
normal token joins this choice token and the normal token has visited the role in the
choice token's ConflictID set, then the SoD requirement has been violated because the
normal token has visited both roles places and should not have been able to. The role
place (r) then adds the choice token to its set of current tokens (r.CurrTk) and its token
log {r.TkLog).

Since choice tokens are not transitioned further by any firing rules and are not
included in inheritance, cardinality, or temporal conflict assessment, no further
postcondition changes are warranted than those presented above. It is important to note
that the finding of a single conflict denotes a problem with this SoD constraint.
Therefore, it is not important to the conflict detection that the arc blocks further flow
from the RSoD place to the chosen role.

Figure 23 illustrates these transition firing rules on the ConPN example shown in
Figure 21.

rcodi.CurrT* - (Ik,, tk,)
tk7.Type = 'choice'
tk7.0 = nodi
tk,.Type

Before TR2 applied to Transition fri
and TR3 applied to Transition tr2

rjA.CurrTk = (tki)
r».Tklog = (tk,)

tk,.RLofl = {ui. rwdi. r?A)

rsodi.CurrTk = {}
rsod.JkLog = {tk, tk7}

r1A.CurrTk = (tk7)
r,«.TW_og • (tk,)
tk7.RLog • {rsodi, rw)
tk7.ConflctlO = (fa*)

After tri fires according to TR2 and
tr2 fires according to TR3

Figure 23. Transition Firing Rules TR2 and TR3

These transition firing rules provide the means to detect conflicts in the ConPN.
By moving tokens through the Petri net, different states of the system are found. The
ConPN executes in a step-wise fashion where enabled transitions are fired until a
quiescent state is reached. This organized evaluation is easily automated using ConPN-
specific software [12]. The next section shows how inheritance policy violations are
found from the ConPN execution.

3.6 Finding Conflicts with ConPN
The ConPN can detect inheritance, role-based SoD, cardinality, and temporal

compliance violations when representing an inheritance policy, IP. We discuss these
findings below.

Inheritance Conflict. If a token visits the same role multiple times, it means that
a role in IP can be visited by a cyclical firing of transitions in the ConPN. This state is
evident in the RLog of each token that retains the roles visited by the token. Thus, the

35

cycle is visible if any place, other than a choice place, appears in the RLog of a normal
token more than once. Formally,

3 tke Token; re SPu RPsuch that tk.RLog\i) > 1 <=> InheritanceConflict(r)

We use a formal definition of the bag, RLog, as a function from places to the set
of natural numbers indicating the number of times a role appears in the bag. Thus,
tk.RLog(r) returns the number of times r appears in tk.RLog.

Figure 24 shows a potential inheritance conflict in the ConPN using the example
from Figure 21. Since tk^RLogir^A) > 1, it is clear that a violation exists. This violation
occurs because in rPj0in {(r2B,r4A,W-Th), (^A^B,

00
)} C Mjoin. This mapping translates into

an execution of the ConPN in which the normal token, tk3, inside role r3A is shown as
having progressed through the sequence of transitions <tr6, ten, trio, u-3) to progress from
U3 to T3A, T3A to r2B, T2B to T4A, and back to T3A. As shown in bold text in Figure 24, the
tk3.RLog contains role r3A twice indicating an inheritance conflict. Because r3A is both
superior and inferior to r4A, the RBAC system cannot determine which role is genuinely
superior.

Domain B

Figure 24. Inheritance Conflict

SoD Conflict. A potential role-based SoD conflict is detected if a normal token
visits a role place that holds a choice token under the following conditions.

• The choice token is not at its place of origin.

• The choice token holds in its ConflictlD set a role that the normal token has
visited.

This indicates that the choice token was unable to protect the use of the role,
where it currently resides, from being accessed by a token that has already accessed the
competing role governed by the RSoD constraint. This is formalized as follows.

3tk, ctke Token; r\, r2 e RP such that
tk.type = "normal" A ctk.type = "choice" A

[tk, ctk} cz r\.CurrTk A ctk.Origin ^ r\ A

T2 e tk.RLog A r-i € ctk.ConflictlD
<=> RSoDConflict(n)

36

For role-based SoD transitions, the transition firing rules TR2 and TR3 are the
only ones enabled. Each role-based SoD place holds a choice token, where its set of
conflicting IDs (ConflictID) is initialized with the competing roles. Upon the first normal
token's path being taken from a SoD place, TR2 is performed. The normal token moves
to the next place and the arc it took becomes blocked. TR3 becomes enabled in this state.
When TR3 fires, it sends the residing choice token down the alternate path from the
normal token. Choice tokens will never be moved from a role place since no transition
firing rules exist to move them out of a role place.

Figure 25 shows the role-based SoD conflict in the example. The lightly shaded
role places (riB, riA) indicate the path of the normal token. The more darkly shaded place
(r2A) indicates the conflict where the two tokens arrive at the same place. User ui initially
contains the normal token tki. The choice place, rsodi, initially contains the choice token
tk6- When these tokens are both contained in rsodi, they are moved according to rules
TR2 and TR3. Assume the case in which tki moves through tr2 to riA. By TR3, tk$ is
moved to T2A through tti. The ConflictID set of tk6 becomes {r)A}. As tki moves through
the ConPN, it is able to access r2A. A violation occurs because its RLog contains riA.
Thus, user ui can be assigned roles nA and r2A simultaneously, bypassing the Role SoD
constraint between roles nA and r2A.

tke=Cchoice", rsodi,0, 0. {ri*, 'IA))

tk, =("normal", Ui,0, 0, 0)

tk, =f normal". Ui, 0, {Ui, rsodi, '\n, he. '2*}, 0) |
tk6=("choice", rsod,. 0. 0, {rtA}) I

trj riA

Domain A Domain B

Figure 25. Role-Based SoD Conflict

Cardinality Conflict. A potential cardinality conflict is present in the ConPN
when more tokens visit a role place than its cardinality allows. Cardinality conflicts are
formally defined as follows, with the symbol '#' meaning 'size of.

3r e RP such that C(r) < #r.Tkl_og ^> CardinalityConflict(r)

Figure 26 shows the cardinality conflict in the ConPN where tokens ti, t3, and u
have reached role place r3A. According to IPA, ui and U3 can legitimately access T3A.
Given that (riB,r4A,F) e Mj0in, user U4 can also access role r3A leading to cardinality
conflict as the number of tokens reaching role place r3A exceeds the cardinality limit.
Though, not shown in Figure 26, U5 can also access T3A.

37

Domain A Domain B

Figure 26. Cardinality Conflict

Temporal Conflict. A potential temporal conflict is present if tokens originating
from the same start place can reach the same role place via distinct paths and end up with
unequal temporal units. The inequality means that the role has been over or under
restricted due to the inter-domain mappings. Both cases are considered improper access.
Formally, a potential temporal conflict exists when

3tki, tk2 G Token; r\ e SP; ri e RP such that
(tki.Origin = r\ A tic .Origin = r{) A

ri e tk/.RLog A r-i e tki.RLog A tk/.RLog * tk2.RLog) A

(tki.Time * tki-Time)
<=> TemporalConflict(/;, ri)

The temporal unit of an inter-domain mapping is the smallest unit granularity on
which temporal constraints are defined, for example days or hours. Temporal constraints
are dictated by a transition when the token's Time is assigned the value of the Temporal
function for the transition. Figure 27 illustrates how the ConPN identifies this conflict
type. User U4 has access to r4A via two paths: U4 -> TIB "^ UA and 114 -^ HB -> r2B "> r4A.
Note that HB replicates token tkt to create tk*. Transitions trg and trio have different
temporal units, which cause confusion as to when U4 should be allowed r4A's permissions.
Because the two temporal units are different, improper access can occur. This state
occurs even each transition reassigns the temporal units to the intersection of the existing
Time value and the transition's time constraint.

Domain A Domain B

Figure 27. Temporal Conflict

Each component in a SoS has its own access control domain. Certain interactions
among the software components within a SoS imply the need to configure an inter-
domain mappings of access privileges. These mappings require formal, scalable scrutiny

38

to uncover potential violations of confidentiality and availability within a single
component. ConPN offers a solution to some of the intricate analysis to discover potential
violations.

4. Conclusion
The difficult integration process of composing a set of independent software

components can introduce unexpected security vulnerabilities in a SoS, making security
certification difficult. We have found that multiple dimensions of policy expression are
needed to detect and mitigate vulnerabilities. In this report, we highlight three dimensions
and their policy representations, analyses, and verification strategies.

5. References

[I] 44 U.S.C. Statue 3542, "44 U.S.C. Chapter 35 - Coordination of Federation
Information Policy - Subchapter III - Information Security," 2007.

[2] J. H. Allen, CERT Guide to Systems and Netwrok Security Practices, 2 ed.:
Addison Wesley, 2001.

[3] E. A. Feustel and T. Mayfield, "The DGSA: Unmet Information Security
Challenges for Operating System Designers," ACM SIGOPS Operating Systems
Review, vol. 32, pp. 3-22, 1998.

[4] A. McCullagh and W. Caelli, "Non-Repudiation in the Digital Environment ".
vol. 5, 2000.

[5] National Institute of Standards and Technology (NIST), "FIPS Publication 200:
Minimum Security Requirements for Federal Information and Information
Systems," 2006.

[6] National Institute of Standards and Technology (NIST), "Special Publications
(800 Series)," 2009, http://csrc.nist.gov/publications/PubsSPs.html.

[7] "Auditing and logging of activities in a network," in IT-Grundschutz Manual.
[8] M. Swanson and B. Guttman, "Generally Accepted Principles and Practices for

Securing Information Technology Systems," National Institute of Standards and
Technology, Ed., 1996.

[9] Department of Defense, "DoD Instruction 8500-2: Department of Defense
Information Assurance Certification and Accreditation Process (DIACAP)," 2003.

[10] C. P. Pfleeger, Security in Comupting, 4th ed.: Prenteice-Hall, 2008.
[II] M. Smith, "Toward Policy Based Logic For Secure Component Interaction," in

Department of Computer Science, vol. M.S. Tulsa: University of Tulsa, 2006.
[12] A. Walvekar, "ConPN: Detecting Conflicts in Interdomain Mappings," in M.S.

Thesis, Department of Mathematical and Computer Sciences Tulsa, OK:
University of Tulsa, 2006.

[13] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, "First experiences using
XACML for access control in distributed systems," in 2003 ACM workshop on
XML security, Fairfax, VA, 2003.

[14] M. Swanson, A. Wohl, L. Pope, T. Grace, J. Hash, and R. Thomas, "Contingency
Planning Guide for Information Technology Systems," National Institute of
Standard ad Technology, Ed., 2002.

39

[15] National Institute of Standards and Technology (NIST), "Recommended Security
Controls for Federal Information Systems, NIST Special Publication 800-53,
Revision 2," U.S. Department of Commerce, Ed., 2007.

[16] National Institute of Standards and Technology (NIST), "Guideline for
Implementing Cryptography in the Federal Government, NIST Special
Publication 800-21, Revision 2," U.S. Department of Commerce, Ed., 2008.

[17] S. Kremer, O. Markowitch, and J. Zhou, "An Intensive Survey of Fair Non-
Repudiation Protocols " Computer Communications, vol. 25, pp. 1606—1621,
2002.

[18] P. Louridas, "Some guidelines for non-repudiation protocols," ACM SIGCOMM
Computer Communication Review vol. 30, pp. 29-38, October 2000.

[19] S. Gurgens, C. Rudolph, and H. Vogt, "On the security of fair non-repudiation
protocols," International Journal of Information Security, vol. 4, pp. 253 - 262
October 2005.

[20] Office of Management and Budget, "Appendix III to OMB Circular No. A-130,"
2008.

[21] M. Kelkar, "Modeling Software Component Security Policies," in Department of
Computer Science, vol. Ph.D. Tulsa: University of Tulsa, 2007.

[22] R. Ross, "Guide for the Security Certification and Accreditation of Fedaral
Information Systems," May 2004.

[23] National Institute of Standards and Technology (NIST), "Contingency Planning
Guide for Information Technology Systems, NIST Special Publication 800-34."
U.S. Department of Commerce, Ed., 2002.

[24] National Institute of Standards and Technology (NIST), "Electronic
Authentication Guideline, NIST Special Publication 800-63," U.S. Department of
Commerce, Ed., 2006.

[25] B. Sotomayor, "The Globus Toolkit 3 Programmers Tutorial," 2004,
http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial 0.4.3.html#id2514656

[26] M. A. Kelkar, R. Perry, R. Gamble, and A. Walvekar, "The Impact of
Certification Criteria on Integrated COTS Based Systems," in sixth IEEE
International Conference on Systems Composition and Interoperability, Banff,
Alberta, Canada, 2007.

[27] L. Davis, R. Gamble, M. Hepner, and M. A. Kelkar, "Toward Formalizing
Service Integration Glue Code," in IEEE International Conference on Service
Computing, Orlando, FL, 2005.

[28] N. Medvidovic, "On the Role of Middleware in Architecture-Based Software
Development," in 14th Int'l SEKE, Ischia, Italy, 2002.

[29] M. Anderson, "VoIP Security: Uncovered," 2005.
[30] International Organization for Standardization (ISO), "Common Criteria for

Information Technology Security Evaluation - Part 2: Security Functional
Components," in Version 3.1 Revision 2, CCMB-2007-09-002, 2007.

[31] Object Management Group (OMG), "UML 2.1.2 Superstructure and
Infrastructure," 2007, http://www.omg.Org/spec/UML/2.1.21.

[32] L. Davis, R. Gamble, J. Payton, G. Jonsdottir, and D. Underwood, "A Notation
for Problematic Architecture Interactions," in ACM SIGSOFT's Symposium on the
Foundations of Software Engineering Vienna, Austria, 2001.

40

[33] J. Payton, G. Jonsdottir, D. Flagg, and R. Gamble, "Merging Integration Solutions
for Architecture and Security Mismatch," in International Conference on COTS-
Based Software Systems, Orlando FL, 2002.

[34] Object Management Group (OMG), "Object Constraint Language Specification,
version 2.0," 2005,
http://www.omg.org/technology/documents/modeling spec catalog.htm#OCL.

[35] G.-C. Roman, C. Julien, and J. Payton, "Modeling adaptive behaviors in context
UNITY," Theoretical Computer Science, vol. 376, pp. 185-204, 2007.

[36] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation: Addison-
Wesley, 1988.

[37] M. T. Gamble and R. Gamble, "Reasoning about Hybrid Systems of Systems
Deisgns," in IEEE International Conference on Composition Based Software
Systems, 2008.

[38] M. T. Gamble and R. Gamble, "Isolation in Design Reuse," Journal of Software
Process Improvement and Practice, vol. 13, pp. 145-156, 2008.

[39] E. Morris, P. Place, and D. Smith, "System-of-Systems Governance: New
Patterns of Thought," Carnegie Mellon University, Technical Note CMU/SEI-
2006-TN-036, 2006.

[40] M. Bishop, Computer Security: Art and Science: Addison-Wesley, 2003.
[41] S. Goel, C. Clifton, and A. Rosenthal, "Derived access control specification for

XML," in ACM workshop on XML security Fairfax, Virginia, 2003, pp. 1 - 14
[42] M. Kelkar, M. Smith, and R. Gamble, "Interaction Partnering Criteria for COTS

Components," in 18th International Conference on Software Engineering and
Knowledge Engineering (SEKE'06), 2006.

[43] R. Bhatti, B. Shafiq, E. Bertino, A. Ghafoor, and J. B. Joshi, "X-GTRBAC
Admin: A Decentralized Administration Model for Enterprise-Wide Access
Control," ACM Transactions on Information and System Security, vol. 8, pp. 388-
423, November 2005.

[44] I. Ray, R. France, N. Li, and G. Georg, "An Aspect-Based Approach to Modeling
Access Control Concerns," Information and Software Technology, vol. 40, pp.
557 - 633, April 25 2004.

[45] B. D. Joshi, B. Shafiq, A. Ghafoor, and B. Bertino, "Dependencies and Separation
of Duty Constraints in GTRBAC," in eighth ACM symposium on Access control
models and technologies, Como, Italy, 2003, pp. 51-64.

[46] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use vol. 1: Springer-Verlag, 1992.

[47] B. Shafiq, J. B. Joshi, E. Bertino, and A. Ghafoor, "Secure Interoperation in a
Multidomain Environment Employing RBAC Policies," IEEE Transactions on
Knowledge and Data Engineering, vol. 17, pp. 1557-1577, Nov 2005.

[48] A. A. El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin, "Organization based access control," in
Proceedings of the 4th International Workship on Policies for Distributed Systems
and Networks (POLICY '03), Toulouse, France, 2003, pp. 120-131.

[49] W. Reisig, Petri Nets: An Introduction: Springer-Verlag, 1985.

41

[50] D. F. Ferraiolo, G. Ahn, R. Chandramouli, and S. I. Gavrila, "The Role Control
Center: Features and Case Studies," in ACM Symposium on Access Control
Models and Technologies Villa Gallia, Como, Italy 2003, pp. 12-20.

[51] M. Smith and R. Gamble, "Equating ConPN with Inheritance Policies,"
University of Tulsa, Technical Report SEAT-UTULSA-2007-4, 2007.

42

